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We discuss sufficient conditions on a compact group G for a function be
decreasing with respect to certain group induced orderings, and present a
class of composition theorems. We give an application of group induced order-
ings to linear statistical models, in particular a new proof of the Gauss-Markov
Theorem. Furthermore, we indicate a possible application of such orderings to
general experimental design problems.

1. INTRODUCTION

The origins of group induced orderings date back at least to the work of ADO
[33]. In a paper concerned with majorization and variations thereof, Rado
observed that classical majorization (see MARSHALL and OLKIN [24], Chapter 1
for an historical sketch concerning majorization) is equivalent to a pre-ordering
defined by the group of permutation matrices.ecall that for two column vectors
x, y in R", x is majorized by y (often written x <y) if the conditions

k k
EX[,'] < E_y[,] s k= l,...,n—l

i=1 i=1

; a (L1)
2 = 2l

are satisfied where x(;)=...=x|,) and y(;;=...2y|, are the ordered coordinates
of x and y. An important characterization of majorization due to HARDY, LiT-
TLEWOOD and PoLYA [19] is that

x<y iff x=Py (1.2)

where P is an n Xn doubly stochastic matrix.

Now, let ¥, denote the group of nXn permutation matrices. BIRKHOFF [3]
proved that 9, is exactly the set of extreme points of the convex set of doubly
stochastic matrices. Thus each doubly stochastic matrix has the representation
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P = Yoz (1.3)
g

where the sum runs over %, and the non-negative weights «, satisfy Za, =1.
Combining (1.2) and (1.3) shows that

x<y ifl x=a,gy (14
£
for some set of non-negative weights «, adding up to 1. The set
0,={gy|g€%,} is the orbit of y under the action of the group ¥, on R".
Further, the convex hull of O, consists of points of the form

x = Za,gy
and is denoted by C(y). We are thus led to Rado’s observation that
x<y ifl xeC(y). (1.5)

Equation (1.5) was then used by ADO [33] as a definition to study relatives of
majorization defined by subgroups of %,. More precisely. if G is any subgroup
of <, define x<(G)y to mean x e Cg(y) where Cg(y) denotes the convex hull
of the set {gy|geG}.

The idea of group induced orderings on R" arose in quite a different context
in MUDHOLKAR [27]. Given a compact subgroup G of the orthogonal group
0,. write

x<y ifl xeC(y) (1.6)

where again C(y) denotes the convex hull of the orbit O, ={gy|geG}. The
dependence of <, C(y) and O, on G is suppressed notationally. A real valued
function f defined on R" is decreasing if

x<y implies f (x)=f(y). (1.7)

Mudholkar’s result gives a sufficient condition that the convolution of two
functions be decreasing.

THEOREM | (MUDHOLKAR [27]). Suppose f| and f, are non-negative measurable
Sfunctions defined on R" which satisfy
(1) filx) = figx), xeR", geG, i=1.2;
(i) for each c>0 and i=1,2, {x|fi(x)=c} is a convex set.
Iy

h(y) = [fily —x)f2(x)dx
is finite for each y €R", then h is decreasing in the sense of (1.7).
The impetus for Mudholkar’s work as well as some more recent work on group
induced orderings has come from problems in multivariate probability inequal-
ities. Such problems often involve obtaining tight upper and/or lower bounds

on a function defined on R”" or some subset of R". To see how group induced
orderings are applied to such problems, again let G be a compact subgroup of
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O, and let < denote the pre-ordering defined by G. Thus, x<<y iff xeC(y).
Consider a real valued function f defined on R” which satisfies

{(i) fix)=f(gx); xeR", geG

(ii) f is concave. (1.8)
First observe that f satisfies (1.7). To see this consider x <y, so
X = Da,g. (1.9)
3

From (1.8), we have

fx) = f(z"‘gg)’)2 Eagf(gy) = Eagf(y)Zf(y).

Thus, concave invariant functions are necessarily decreasing in the sense of
(1.7) and lower bounds on f (x) are obtained when x € C(y). Upper bounds on
f satisfying (1.8) are obtained via the following observation. Given any y, let

y = [gymdg)

where » is the unique invariant probability measure on the compact group G.
Obviously y<\y since y is a ‘convex combination’ of points in the orbit of y. In
fact, y is the smallest element in C(y) in the sense that xeC(y) implies y<x.
To see this, observe that x<x and for xe C(y) we have

X = Dapgy.
£
Therefore the invariance of » yields
x = [hxv(dh)= [h(Sa,gy(dh)=Sa, [hgyn(dh)
= Zagfhy Wdh)=Za,y=Yy.
Thus, for f satisfying (1.8), the double inequality

fW=f(x)=f(y) (1.10)

is valid for all xeC(y). Further (1.10) is sharp in the sense that there are
points in C(y) so that both of the inequalities are equalities.

It is inequality (1.10) which has proved to be so useful in many applications.
When G=9,, the book by MARSHALL and OLKIN [24] provides a host of
examples. The main focus of this paper is a discussion of conditions on a com-
pact group G so that usable sufficient conditions can be given which imply that
a function is decreasing, and thus that (1.10) holds. In the case that G=9%,,
there are three general sets of conditions on a function f which imply that f is
decreasing. A differential condition due to OsTROWSKI [30] is discussed in
MARSHALL and OLKIN ([24], p. 57). A second type of condition, established by
MARSHALL and OLKIN [23], shows that the convolution of two decreasing func-
tions is again decreasing. Both sets of conditions were shown to have complete
analogues when the group G is a reflection group (see EATON and PERLMAN
[13]). A third set of conditions involves the so-called composition theorem and
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convolution families of probability densities (sec PROSCHAN and SETHURAMAN
[31], HOLLANDER, PROSCHAN and SETHURAMAN [20], and NEVIUS, PROSCHAN
and SETHURAMAN [29]). These are the types of conditions on which our discus-
sion centers.

General group induced orderings are introduced in Section 2. The line of
development described here comes from EATON [6,9,10]. This development
provides a description of what is currently known concerning differential con-
ditions which imply that a function is decreasing (as defined in (1.7)). After
presenting two standard examples, we apply the theory to give a group
induced ordering on real skew symmetric matrices.

In Section 3, we discuss a class of composition theorems which yield
sufficient conditions for certain functions to be decreasing. These theorems
have applications in probability and statistics via multivariate probability ine-
qualities - for example, see INOTT [34], MARSHALL and OLKIN [23], EATON and
PERLMAN [13], PROSCHAN and SETHURAMAN [31], MARSHALL and OLKIN [24],
ToNG [37], EATON [7], EATON [9], and EATON [10].

An application of group induced orderings to linear statistical models is
presented in Section 4. A new proof of the classical Gauss-Markov Theorem is
given. Under slightly strengthened assumptions, this classical result is then
extended to a more general class of loss functions.

In Section 5, we discuss some open problems connected with group induced
orderings. In addition, we indicate a possible application of such orderings to
experimental design problems.

Before beginning a general discussion of group induced orderings, it is useful
to consider an example which is prototypical of many statistical applications of
such orderings. This example concerns what might be called the k-sample
Behrens-Fisher problem and its solution dates back to Hsu [21] and HAJEk
[17].

ExaMmpLE |. Consider random samples from k normal populations, say Xj;,
j=\Ll..,n;+1and i =1,...,k where the distribution of X;; 1s
B(X;) = N(w.0f).

Here the mean p; and the variance o? are both unknown. The problem is to
construct a confidence interval (perhaps approximate) for a known linear com-
bination of the means - say

0 = D
i
with ¢y,...,¢; known constants. The sample means

X, = (m+1) ' 32X,
J

and the sample variances
sio=n ' (X — XY
i



are the MVUE (Minimum variance unbiased estimators) for the population
means and variances respectively. Thus

b = EC,';?,'
is the MVUE for # and

£@) = N@.7)
where

? = DeXm+1)" ok
Further,

2
T = Scknm+1)7s?
;

is the MVUE for 7 so it seems reasonable to try to construct a confidence
interval for § based on the approximate pivotal quantity

0—0

T

W =

For a fixed constant d, the interval (9—d:r, 9+d¢r) has confidence coefficient

Sa__;zgﬁstN

T

v="

where ¢ is a function of o1,...,6}. Thus, the assessment of the above interval as
an inferential procedure depends on finding upper and more importantly,
lower bounds on y. To this end, set

é—ﬂz

zZ =

T

so Z has the x{ distribution (chi-square with one degree of freedom distribu-
tion). Now, define w;; by
cdm+l) 'n ‘o
wij = 7z , J=1on;
for i=1,...,k. Obviously 0<wj;; and

ZZWU- =1
L)

T : a2
Because (n;s?)/0? has a x% distribution, it follows easily that 7 /7> has the
same distribution as

V= 23wy
L}

where {Uj |j=1,...,n; i=1,..,k} is a collection of n=23n; i.i.d. (independent
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and identically distributed) x{ random variables.
The analysis above and the independence of 8 and 7 show that

¥ = Yw)=P(Z<d*(Z3w;Uy)}
ij

where w is the n-dimensional vector with coordinate w;;, and Z is independent
of the Uj;. Therefore bounding y involves studying y(w). For notational con-
venience, the double subscript notation is now dropped and we consider vec-
tors w in R" which satisfy
(l) OSW,',I‘ = 1,...,";
n
(i) EW:‘ =1
]
(iti) n; coordinates of w are the same, n, coordinates of w are the same,...,n;
coordinates of w are the same where n =2Zn;.

Let A CR” be the set of w’s satisfying these conditions. The function which
needs to be bounded is

Yw) = P{Z<d*w'U)

where U is an n-vector of i.id. x} random variables and w’ is the transposed
of w. Because Z and U are independent, y{w) can be written

Ww) = &(F(d*w'V))

where F is the distribution function of Z. Since Z is x}, F is a concave func-
tion so that ¢ is a concave function.

Now, let 9, be the group of nXn permutation matrices. Since the coordi-
nates of U are i.i.d., it follows that

BU) = E(gU), g€,

In other words, U is exchangeable and so y(w)=y(gw) for ge¥,. Thus ¢
satisfies (1.8) and hence the analysis leading to (1.10) is valid. In particular, for
any weA, the vector

_ 1
w = F%gw
satisfies gw=w for all g€ P,. This implies that
_1 ,
W= (1,1,...,1]
and hence Y(w)<y(w) for all weA4. A moment’s reflection shows that

lIJ(W) = P{Fl,ngdz}

where F, has the F-distribution with 1 and n degrees of freedom.
A lower bound for § on the set 4 is obtained as follows. Recall that n; is
the smallest sample size. Define w by

%= [1,1,..,1,0,0,...07 €4
ny
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where w has n, coordinates equal to one and the remainder are zero. The clas-
sical definition (1.1) of majorization yields w<w for all weA so that we C(w).
Hence

YW)<i(w), weAd.
Again, it is easy to show
Yw) = P{F,, <d*)

so that computable tight upper and lower bounds on y(w) have been found.

2. GROUP INDUCED ORDERINGS

Our formal treatment of group induced orderings is restricted to the finite
dimensional case and to the case that the group is a compact group of linear
transformations. More precisely, let (V,(-,-)) be a finite dimensional inner pro-
duct space. As usual GL(}V) denotes the group of non-singular linear transfor-
mations on V. The orthogonal group of (V,(-,")) is

oWV) = {g|geGL(V), (gx,gx) = (x,x) for xeV}.

In what follows, G is a closed subgroup of O(V) so G is compact. Given
xeV, O,={gx|geG} is the orbit of x and C(x) denotes the convex hull of
O,. Because G is compact, both O, and C(x) are compact subsets of V.

DEerINITION 2.1. For x, zeV, write z<x iff zeC(x). The dependence of <
on G is suppressed notationally. Here are some easily verifiable facts about the
relation <.

PrOPOSITION 2.1. For xeV

(1) gCx) = C(gx)=C(x), gegq;

() z<xiff g1z<g,x for some g, g,€G;
(i) zeC(x) iff C(z)CC(x);

(iv) z<<y and y<x implies z<x;

(v) z<xand x<:iff z€0,.

PrROOF. Property (i) follows from the invariance of the orbit O, and the fact
that

O0,=0,, gel.

(i1) follows directly from (i). For (iii), C(z) CC(x) obviously implies z € C(x).
Conversely, zeC(x) implies gzeC(x) for all geG by (ii). Thus C(z)CC(x)
since C(x) is convex. If z<y and y<x, then by (ii)) C(z) CC(y)CC(x) so
z<x and (iv) holds. To prove (v), if z€O,, then z=gx for some geG so by
(i) z<x and x<z. Conversely, assume z<x and x=<z. Then for some integer
r,

r
z = Degix
=l



where g, x,...,g,x are distinct vectors, 0<e; and Za; = 1. Thus,
llzll = [Beigix||<Zaillgix]] = Zayflx]| = [jx]| 2.1)

Similarly ||x||<||z|| so ||x||=||z||- But there is equality in the inequality (2.1) iff
all the a; except one are zero because the norm || - || derived from an inner pro-
duct is strictly convex. Thus, zeO,. [

The relation < is called a pre-ordering in what follows. (The term ‘ordering’ is
usually reserved for relations which are reflexive, transitive and x<y<x
implies x =y.) A real valued function f on V is decreasing if x<y implies that
f(x)=f(y). If —fis decreasing, then fis increasing. Observe that any decreas-
ing function f must satisfy

f(x) = flgx), x€V, geG

because x <gx <x for all x,g.

In order to decide whether or not z<x, it is necessary to have a verifiable
criterion to decide whether or not zeC(x). The use of support functions for
this purpose was developed in EATON [6,9] and in GIOVAGNOLI and WYNN
[16]. Given x, ueV, define m on VXV by

mlu,x] = E?B(u,gx). (2.2)

The use of the square brackets in the definition of m is to distinguish m([-,]
from the inner product (-,-) on the right hand side of (2.2).

PROPOSITION 2.2. The function m satisfies
(1) mlu,x] = mlx,u];
(i) mlgiugox) = miux] for g1.82€G;
(iii) z<x iff mlu,z)<mlu,x] for all ucV .
ProOF. Properties (i) and (ii) follow from the fact that G is a subgroup of
O(V). For (iil), if z<x, then

zZ = Ea,-g,-x
as in (1.1). Thus

mlu,z] = sup(u,gz) = sup(u,g(Se;g;x)) = supZ, (u,ggix)<

3 g g
Sa;sup (u,ggix) = Zaysup (u,gx) = Seymlu,x] = mu,x].
g I3

That the right-hand side of (iii) implies z<x can be proved directly from the
Separating Hyperplane Theorem (see EaToN [10], Proposition A.3). Alterna-
tively, the fact that wwmlu,x] is the support function of C(x) (see
ROCKAFELLER [35], Chapter 13) can be used to give a proof. [J

Part (ii) of Proposition 2.2 shows that m is an invariant function of each of its
arguments. Thus m is determined by its values on the quotient space V'/G. In
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all of the applications that I know, it is possible to ‘represent’ ¥'/G by a con-
vex cone contained in V. Further, this representation turns out to be important
in characterizing the pre-ordering <.

At this point in our discussion, we restrict our attention to the group induced
cone orderings. In essence these are the pre-orderings where we know a
differential characterization of the decreasing functions.

DerFINITION 2.2. The pre-ordering < defined on (V,(-,-)) by G is a group
induced cone ordering if there exists a closed (non-empty) convex cone FCV
such that

(1) for each xeV, O,NF is not empty;

(i) for u, xeF, mlu,x] = (u,x).

Condition (i) says that each orbit intersects F. Since the relation x <y is invan-
ant in both x and y, it is sufficient to characterize < for x, yeF. Condition
(1) simply says that the support function m is just the inner product when res-
tricted to F X F. Let M be the linear span of F so that F has a non-empty inte-
rior as a subset of the linear space M. Further, let

Fy = {(weM|(w,x)=0 for all xe F}.

Thus, Fyy is the dual cone of F relative to the subspace M.

PROPOSITION 2.3. Assume < is a group induced cone ordering. For x, y €F, the
following are equivalent:

1 x<y;

(i) y—xeFp.

PrOOF. When x<y, Proposition 2.2 (iii) together with Definition 2.2 (ii)
shows that for ueF

(u,x) = mlu,x<mluy] = (up).

s0 y —x € Fy. For the converse, just read the above argument backwards. [J

Proposition 2.3 shows that < is a cone ordering on F as defined in MARSHALL,
WaLkupr and WETS [25]. The convex cone which defines the cone ordering is
Fy while the domain of definition of the ordering is F. Recall that a subset
T * CFy is a positive spanning set for Fy if every element u of Fy has the
form

u = éa,'t,-
1

where £,€T", 4,20 for i=1,..,r and r is some positive integer. A positive
spanning set T C Fy is a frame for Fj if no proper subset of T* is a positive
spanning set. A direct application of the results in MARSHALL, WALKUP and
WETS [25] yields the following necessary and sufficient condition that an
invariant function with a differential be decreasing when < is a group induced
cone ordering.
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THEOREM 2.1. Suppose < is a group induced cone ordering on (V,(-,")) with F
and Fyy as above. Let f be a real valued function which is invariant (i.e.
S(xX)=f(gx) for xeV and gG), and suppose f has a differential df. Let T* be
a positive spanning set for Fy. The following are equivalent:

() x<y implies f(x)=f(y) for all x,y eV,

(i) (t,df (x))<O for all xeF and teT".

In applications of Theorem 2.1, one tries to find a frame T* for Fy when
attempting to verify (ii). In the following example, we show that the above
theory applies and yields the classical results concerning majorization.

ExaMmpLE 2.1. (Majorization). Let V=R" with the usual inner product and
consider the pre-ordering < induced by the group of permutation matrices 9,,.
The usual choice for the convex cone F is

F={x|x=.2x,)

where x,...,x, are the coordinates of x. Obviously, every orbit intersects F.
Since F has non-empty interior, M =R" for this example. The fact that

mlu,x] = supu'gx =u'x
3

for x,ueF is the famous rearrangement inequality of HARDY, LITTLEWOOD
and PoLya ([19], p.261). Thus, we see that < is a group induced cone ordering
(as in Definition 2.2).

The dual cone of F is easily shown to be

k n
F' = {u|2u,->0, k:l,...,n -1, Zu’.:()}'
! I

A frame for F" is
T ={th,ti}

where £) €R" has its ith coordinate equal to one, its (i +1)st coordinate equal
to minus one, and all other coordinates equal to zero. Proofs of these asser-
tions can be found in EATON {10].

For x, y € F, Proposition 2.2 shows that x<y iff y —xeF" ifl

k k
=%, k=1..n—1
]

2
':ZYi = ixi-

1

These are just the classical conditions for majorization for elements of F. For
elements not in F, one simply permutes the coordinates so the permuted vector
is in F, and then applies the above conditions.
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Now, let fbe a 9, invariant real valued function defined on R" and assume
S has a differential df. Theorem 2.1 shows that f is decreasing iff

Vildf(x)<0, i=1,.,n, xeF
which is easily seen to be equivalent to the conditions

of 9f
ax, )=.< ox, (x), xeF.

These are exactly the OsTRowsKI [30] conditions for f to be decreasing (Schur
concave). This completes Example 2.1.

ExaMpLE 2.2. For this example, take V' to be the real vector space of nXn
real symmetric matrices with inner product

(x,p) = trxy
where tr denotes the trace. Let O, act on V by
x—gxg'

for xeV and g€0,. The Spectral Theorem for real symmetric matrices implies
that for each x, there is a g€ O, such that

z = gxg’'
is an nXn diagonal matrix with diagonal elements z; which satisfy
Z11=...222,,. Thus, the convex cone

F = {z|z€V, z is diagonal, z || =...=>2,, )

intersects every orbit under the action of O, on V. For u, x€F,
n
mlu,x] = suptrugxg’ = Du;x; = trux=(u,x).
g i=1

The second equality is a consequence of results of vVON NEUMANN [28] and
FAN [14] (see also Example 6.4 in EATON [10]). Hence the pre-ordering <
induced on ¥ by O, is a group induced cone ordering.

It is clear that the subspace M generated by F is just the space of all nXn
real diagonal matrices. Using the results of Example 2.1, it is routine to show
that the dual cone Fy; (of F in M) is

k n
Fyp = {z|zeM, 3 2;20, k=1,.,n—1, >, z; = 0).
! 1

As in Example 2.1, a frame for Fy is
T = {t1,ty}

where #; € Fy; has its (i,i) element equal to one, its (/ +1, i +1) element equal
to minus one, and all other elements are zero.

Given xeV, when gxg’=z is in F, then the diagonal elements of z are just
the ordered eigenvalues of x. To interpret what the pre-ordering < means in
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terms of eigenvalues, consider x,y € V and write

z=gixg),w = gyg)
withzandwin F. Then x<y iff z<w iff w —z e Fy iff

k k n n
Swi= Dz k = lo.n=1 Xw =z
1 I 1 1

In other words, x<Xy iff the eigenvalues of y majorize the eigenvalues of x.
This was proved by KARLIN and RINOTT [22] from first principles, by ALBERTI
and UHLMANN [1] in a book related to mathematical physics, and by EATON
[6,9] using the general theory of group induced cone orderings described
above.

To describe the decreasing functions, first note that if f is decreasing, then
f(x) is only a function of the eigenvalues of x. Because of the above charac-
terization of <  in terms of majorization, f is decreasing on V iff as a function
of the eigenvalues of x, it is decreasing in the sense of majorization (as in
Example 2.1).

Here is a new example of a group induced cone ordering.

EXaMPLE 2.3. Let V be the real vector space of nXn real skew symmetric
matrices, with inner product (x,y)=trxy’. The case of n even, say n=2r, is
treated below. When » is odd, the details are slightly different, but the same
general argument applies. The group O, acts on V via

x—gxg's xeV, ge0,.

This group action produces a canonical form for x which can be described as
follows. Let E\,...,E, be defined by

0 o 0]
- ' 01
E=1" lio
where the 2X2 block
0 1
-1 0

is located on the diagonal in rows and columns 2/ —1 and 2i, i =1,...,r. Given
x eV, there exists a ge O, such that

gxg’ = 2 0,E;
sy
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where the real numbers 6,,...,6, satisfy
0,=6,=..260,=0.

For a proof of this standard result, see MEHTA ([26], p. 221). Thus the convex
cone

F={x|x= $0,—E,~ with 8, >...>0,>0)
intersects every orbit under the action of O, on V. When x €F, say
X = $0iEi’
then the singular values of x (by definition, the singular values are the ordered

non-negative square roots of the ordered eigenvalues of xx’) are easily shown
to be

0[90l5029021-"a0r)0r'
The results of vON NEUMANN [28] and FAN [14] show that for

r r
x =2 6E andu = D «F;in F,
1 1
we have
r
mlu,x] = sup tru(gxg’y = 2 3 a;6; = trux’ = (u,x).
g 1

Therefore O, induces a cone ordering < on V as in Definition 2.2.
To describe the pre-ordering < more completely, let

M = {xlx = 2 a,-E,-, a,-EIR, i = 1,...,"}‘
|

Clearly M is the linear subspace of V generated by F. It is not too hard to
show that the dual cone of Fin M is

Fiy = {x|x = $a,-E,~, $a,.>0, k=1,.r).
Therefore, for x,y € F, say
x = $ 6.E; and y = $mEn
we see that x<<y iff
$n,- = ?0,-, k=1,.r (2.3)

This relationship among 6, >...=6,=0 and »,=...=%,=0 is sometimes called
submajorization - that is, the vector of &s is submajorized by the vector of 7’s

15



(see the discussion in MARSHALL and OLKIN ([24], p. 10) and in EATON ([10],
Example 6.2, p. 157)).

For x and y in V, the relation x<y can be described as follows. Let
6,,0,,...,0,,0. be the singular values of x and let 9y,7y,...,n,,m, be the singular
values of y. Then x<y ifl the singular values of y submajorize the singular
values x - that is, ifl the inequalities

k k
2 Ni = 2 0,‘, k = 1,...,r
1 1

hold. These inequalities are related to the group induced cone ordering given
in Example 6.2 in EaTON [10].

Finally, suppose f'is an O,-invariant function defined on V. Then f'is deter-
mined by its values on F so we write

h(0) = f(iﬂ,E,) for é 0,»E,- in F.
1 1

Assume h has a differential. It follows from MARSHALL, WALKUP and WETS
[25] that the conditions

oh dh
%, 6)<..<35-O=<0 2.4)

imply that
h(@)=h(n)

whenever (2.3) holds. Thus the conditions (2.4) imply that an invariant func-
tion f is decreasing.

Other examples of group induced cone orderings can be found in EATON and
PERLMAN [13], ALBERTI and UHLMANN [1], EATON [6,9] and EATON [10].

3. COMPOSITION THEOREMS

For group induced cone orderings, the results of Theorem 2.1 provide neces-
sary and sufficient conditions for a differentiable invariant function to be
decreasing. These conditions are certainly the most widely used for proving
that functions are decreasing. However, in special situations there are other
sufficient conditions which are sometimes easier to verify than the differential
condition. In this section, we review a few of the main results.

Here is a common situation in probability and statistics to which group
induced orderings and the double inequality (1.10) can sometimes be a Pplled.
Let XCR* be the sample space of a random vector. Also, let © CR* be a
parameter space for a class of probability models for X. Assume that A is a o-
finite measure on the Borel sets of X and assume that X has a density (with
respect to A) f(- | ) where 8€®. For any integrable function 4, consider

WO) = Ggh(X) = [ h(x)f(x |ONdx). (3.1)
24
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The question is: Under what conditions on h, f(-|-), and A can we hope to
apply the ideas of group induced orderings in order to conclude that ¢ is
decreasing (or increasing)? Notice that Mudholkar’s result mentioned in Sec-
tion 1 provides one set of sufficient conditions that y be decreasing when 4 is a
translation parameter.

To give another example, let XCR* be the set of vectors x whose coordi-
nates x,...,x; are non-negative integers which satisfy

k
Sx =n
1

Here n is a fixed positive integer. Take A to be counting measure on X. Let
© Cyk be the set of s with coordinates 6,,...,6;, which satisfy

k
0,'?0, 2 0,- =1L
1

The density of the multinomial distribution, 9k, 8,n) is

foe|8) = —nL ﬁ 8", xe%X.

xiloxg!

The group ¥, of permutation matrices acts on X and ©. Thus we have the
group induced pre-ordering < on both X and ©. .

THEOREM 3.1 (RINOTT [34)). Suppose h is a real valued function defined on X
which is decreasing. Then

W(O0) = Ggh(X) = [ h(x)f(x | ONx)
X
is a decreasing function defined on ©.

Rinott’s proof consists of showing that i satisfies the differential conditions of
Example 2.1. NEvIUs, PROSCHAN and SETHURAMAN [29] developed another
method for establishing this result which is discussed later in this section.
MaARrsHALL and OLKIN [23] established a convolution theorem which
strengthens Mudholkar’s Theorem in the case that the group is 9 is acting on

yk.

THEOREM 3.2 (MARSHALL and OLKIN [23]). Suppose f| and f, are non-negative
functions defined on R¥ which are decreasing (in the pre-ordering of majoriza-

tion). If
f36) = [ fEx)f2(x —B)dx
RA

exists for Oeyk, then f is decreasing.

These two theorems turn out to be closely connected with the fact that 9 is a
reflection group. To explain the connection, we now turn to a discussion of
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such groups. In the inner product space (V,(,-)), Let u be a vector of length
one. Define the linear transformation R, by

R.x = x—2ux)u, xeV.

Clearly R,u= —u, R,x=x if (u,x)=0 and R,=R, I. Thus, R,e0(V) reflects
vectors across the hyperplane {x|(#,x)=0}. Any such transformation is a
reflection.

DEFINITION 3.1. A closed group G CO(V) is a reflection group if there is some
set of reflections R={R,|u€l} such that G is the closure of the group gen-
erated algebraically by 4.

The structure of reflection groups is completely known, see EATON and PERL-
MAN ([13], Section 3) for a discussion. In particular, the pre-orderings induced
by reflection groups are all group induced cone orderings (i.e. Definition 2.2).
However, the groups in Examples 2.2 and 2.3 are not reflection groups.
Perhaps the most relevant example here is %; acting on R¥. To see that % is a
reflection group, just take

A= {ulu=1/V2,i=1.k—1)

where t1,....t | are given in Example 2.1.
In what follows, we focus on a given set

& = (R, |ueA} CO(V)

of reflections rather than on the reflection group G generated by 4. Let X and
% be R-invariant Borel subsets of V.

DEFINITION 3.2. A real valued function f defined on XX is a decreasing
reflection (DR) function if

(1 flxy) = fIRx,Ry) for R, eR;

(i) for ueA, if (u,x)(u,y)=0, then f(x,y)=f(x,R.p).

Condition (ii) which is the essence of the definition, means that when x and y
are on the same side of the hyperplane {x |(u,x)=0}, then f does not increase
when one of the arguments is reflected across the hyperplane. For a statistical
interpretation of DR functions when G=9,, see EaToN ([10], Chapter 3).
When G =9,, properties of DR functions have been used in a variety of appli-
cations. For example, SAVAGE [36] applied the ideas to some non-parametric
problems while EATON [4] isolated properties (i) and (ii) in a paper on ranking
problems. In the context of majorization PROSCHAN and SETHURAMAN [29]
proved the important Composition Theorem for DR functions when G=9,.

To describe the Composition Theorem in the case of general reflection
groups, let

R = {R,|uel}

be a given set of reflections.
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Suppose %,% and £ are Borel subsets of (V,(:,")) which are invariant under
each reflection in 9. Further, let A be a o-finite measure defined on the Borel
subsets of U and assume A is invariant under each reflection in }.

THEOREM 3.3 (COMPOSITION THEOREM). Suppose fy and f, are DR functions
defined on XX %Y and YX Z respectively and suppose

fi(x.2) = [ ixP)0.2Mdp).
exists for each x and z. Then f3 is a DR function on XX %,

ProoF. That f3 satisfies (i) of Definition 3.2 is an easy consequence of the
invariance assumption on A and the fact that f; and f, are DR functions.
Now, consider R,e® and xe%, zeZ which satisfy (u,x}u,z)=0. It must be
“shown that

8 = f3(x,2)— f3(x,R,z) 3.2)
= [ ic)lfa0n2) — f2(,Ruz)Ndy) >0,

Decompose the region of integration % into

B = P l@r)>0}, % = {r|@y)=0},3- = {y|(uy)<0).

In (3.2), the integral over the set %, is zero because f(y,R,z)=f(y,z) for
y€%. Using the change of variable yoRyy, the integral over Y is
transformed into an integral over %, . Then the invariance assumptions on f,
f> and A show that 8 can be written

8 = [1xy) = Aila RN 20.2) — fo(.Ruz)Ndy).
%,

Because f| and f, are DR functions, the integrand is non-negative over %,
since (u,x)(4,z)=0. Thus §=0 and the proof is complete.  [J

Now, we turn to a connection between DR functions and the decreasing (or
increasing) functions. This connection was first established in HOLLANDER,
PrROSCHAN and SETHURAMAN [20] for the case G=9,.

THEOREM 3.4. Let G be the reflection group generated by the set of reflections

R={R, |uecA}. For a function f, defined on V, the following are equivalent:

(1)  fo is decreasing (increasing);

(1) the function f(x,y)=fo(x —y) (f (x,y) =fo(x +y)) is a DR function and
satisfies f (x,y)=f (gx,gy). g€G.

PrOOF. The proof of this result depends on the structure theory for reflection
groups and is not given here. A proof in the case of G=%, can be found in
HOLLANDER, PROSCHAN and SETHURAMAN [20]. A discussion of the general
case can be found in EATON ([10], Chapter 6). O
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In some cases, the conclusion of Theorem 3.4 is true for f; defined only on a
G-invariant subset, say %, of V. The G-induced ordering on % is the restriction
of the G-induced ordering on V. For example, if G=9, and % is the set of all
vectors in R” with integer coordinates then Theorem 3.4 is valid. Also if X is
the set of vectors all of whose coordinates are non-negative, then Theorem 3.4
is valid. These two cases are used in the Poisson example at the end of this
section.

Taken together, Theorems 3.3 and 3.4 provide a very easy proof of the so-
called Convolution Theorem for the case of a reflection group (EATON and
PERLMAN [13]). Again, let G be a reflection group acting on (V,(-,")).

THEOREM 3.5 (CONVOLUTION THEOREM). Suppose f| and f, are non-negative
decreasing (in the pre-ordering defined by G) functions defined on V. Let dx
denote Lebesgue measure on V and assume

[r0) = [ iy —x)falx)dx
v
exists for each y €V. Then f3 is decreasing.

Proor. From Theorem 3.4, it suffices to show that
f0.2) = fiy —2) = [ iy —z —x)fa(x)dx
4

is a DR function. The invariance of f; follows from the G-invariance of fi, f>
and dx. Using the translation invariance of Lebesgue measure, we have

f0.2) = [ iy —x)falx —2)dx.
V

Theorem 3.4 shows fi(y —x) and f>(x —z) are both DR functions on VXV.
The Composition Theorem then yields that fis a DR function and hence that
f3 is decreasing. [

Applications of the Convolution Theorem can be found in MARSHALL and
OLKIN [23,24], EATON and PERLMAN [13] and EATON [7]. The validity of this
result for non-reflection groups is discussed in Section 5.

The main applications of the Convolution Theorem in statistics is to prob-
lems involving a translation parameter. For non-translation parameter prob-
lems there is one special case where arguments similar to that used in the
proof of Theorem 3.5 can be used to show functions are decreasing or increas-
ing. An example will illustrate the main idea. Again consider the reflection
group 9, acting on R" and let X be those vectors in R" which have integer
coordinates. Counting measure on X is denoted by A. Further let © be those
vectors in R” with all coordinates positive. Given 6€®, consider the density
(on %, with respect to A) given by

noe 0’0;"

I

if x,20,i=1,...,n
1 ox!

J
fx]0) = 0 otherwise.

20



Then f(-|0) is the density function of a random vector X with independent
coordinates X|,...,X, and X; has a Poisson distribution with parameter 6;,
i=1,...,n. Let h be an increasing function defined on . (Functions which are
defined only on {x|xe% x;=0 i=1,..,n}=%" and are increasing have
increasing extensions defined on .) Here is the argument used by Hol-
LANDER, PROSCHAN and SETHURAMAN [20] to show that

W) = [ hix) flx|Ndx) (33)
X

is increasing. First, ¢ is increasing iff y(8+7n)=k(f,n) is a DR function on
©X O (by Theorem 3.4 applied to the convex ¥,- invariant set © rather than
R"). But

YO+m) = [ h(x) f(x|0+n) Adx). 3.4
Now, the density f(-|) has the convolution property - that is, for all x €,
fx|0+m) = [ fix =y [0) fiy [m) Mdy). (3.5

Such parametric families are called convolution families. Substituting (3.5) into
(3.4) and interchanging integrations yields

WO+m) = [ fly [w) [[h(x)f(x —p |6) Mdx)] Mdy).

Changing variables in the inside integral, the translation invariance of A gives

WO+ = [ fiy[n) [[h(x +y) fix | ONdx)] Mdy).

But, a routine argument shows that f{-|-) is a DR function. Since 4 is increas-
ing, (x,y)~h(x +y) is a DR function, so

(.0 [ h(x +y) flx|6) Mdx)

is a DR function by the Composition Theorem. A second application of the
Composition Theorem then shows that (6,7)~y(f+n) is a DR function so y is
increasing,

The essence of the above argument is two applications of Theorem 3.5
together with the observation that f(-|8) is a convolution family. Other appk-
cations of this argument can be found in HOLLANDER, PROSCHAN and
SETHURAMAN [20] and MARSHALL and OLKIN [24]. The result of RINOTT [34]
given in Theorem 3.1 above follows from the above resuit for the Poisson dis-
tribution via an easy conditioning argument (see NEVIUS, PROSCHAN and
SETHURAMAN [29]).

4. THE GAUSS-MARKOV THEOREM
In this section, we use group induced orderings to provide a new proof of the
classical Gauss-Markov Theorem. This new proof suggests some strengthened
versions of this classical result under some slightly stronger assumptions.

In an inner product space (V,(-,)), a linear statistical model for a random
vector Y consists of the specification of
(i) a known linear subspace M in which the mean vector p of Y is assumed

to lie;
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(i1) a known set y of possible positive definite covariances for the random vec-
tor Y.
Throughout this discussion, it is assumed that the identity is an element of y.
The linear unbiased estimators of p have the form AY where 4 is a linear
transformation on V which satisfies

Ax = x for xeM. 4.1

Let £ be the set of all linear transformations satisfying (4.1). Typically, one
tries to choose 4 £ to minimize some measure of average loss of the form

WA) = EK(AY —p). (4.2)

A classical choice for the function K, in the context of the Gauss-Markov
Theorem, is the quadratic form

K(x) = (x,Bx), xeV (4.3)

where B is some fixed self adjoint positive definite linear transformation on V.
In the present context, the Gauss-Markov Theorem takes the following form.
Let Ag€C be the orthogonal projection onto M.

THEOREM 4.1. Assume that 2(M)CM for each 2 (so the regression subspace
is an invariant subspace of each of the covariances in the model for Y). Then for
each non-negative definite B and each €, the function

WA) = HAY—p, B(AY —p)

is minimized at A =A,. Conversely, if B is positive definite and if { is minimized
at A=A, for each ey, then Z(M)CM for each Zey.

This form of the Gauss-Markov Theorem is discussed in EATON [8] where a
proof can be found. In the present generality, the result applies to both
univariate and multivariate analysis of variance models as well as some types
of linear models with patterned covariances.

To formulate things in terms of subgroups of O(V), first let Q=(I —A,) be
the orthogonal projection onto M+ - the orthogonal complement of M. Then
set

g = 1-20Q. 4.9
Clearly g,=g,’=g, '€eO(V), so G,={lg,} is a two element subgroup of
O(V). The following result connects G, to a basic condition in Theorem 4.1.

LEMMA 4.1. The following are equivalent
(iy Z(M)CM for all Zev;
(1) g,=2=2g, for all Zey.

Proor. Condition (ii) is clearly equivalent to
(i) A,2=24, for all Zey.
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That (ii1) and (i) are equivalent is well known (for example, see HALMOs [18]).
O

LemMMA 4.2. For each A €f,
A + Ag,

ey, (45)

PROOF. A bit of algebra shows that

A+Ag,

2 T
Because 4 £,
AA,x = x for xeM
AA,x =0 for xeM+.

Since A4, is a linear transformation, and agrees with 4, on M and M L. obvi-
ously A4,=4,. 0O
Note that

A + Ag,

2
is just the average (with respect to the invariant probability measure on G,) of
{4Ag| g€G,}. Thus 4, is in the convex hull of the orbit {Ag|geG,} for every
A€l
Here is Theorem 4.1 expressed in terms of G,,.

THEOREM 4.2. Given the linear model for Y, assume that

2g, = g2, Zey. (4.6)
Then for each positive semi-definite B and for each ey,

WA) = §AY —p, B(AY —p))
is minimized at A=A,.
PrROOF. A standard result in the calculus of random vectors (see EATON [8§],
Chapter 2) shows that when Cov (Y)=2%,

Y(A) = HAY —p, B(AY —p)) = tr AZA'B
where tr denotes the trace. Because of assumption (4.6),

UAg,) = YA), A€E, 4.7

so ¢ is a G, invariant function. Because = and B are non-negative definite, it is
easy to verify that ¢ is a convex function defined on the convex set £. Using
Lemma 4.2 and (4.7), we have for any 4 €,
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WA,) = WA +Ag,)<TUA) + 3UAg,) = WA)

and the proof is complete.  [J

The above argument is just a special case of the argument given in Section 1 to
derive inequality (1.10) (for concave rather than convex functions). In our pre-
vious terminology, G, acts on £ and ¢ is an invariant convex function. Thus,
for A €f, ¢ must be minimized at ‘the center of the orbit of 4.

We now turn to a generalization of Theorem 4.2. As before the linear model
for Y in (V,(-,")) consists of the regression subspace M and the set of covari-
ances v for Y. Elements A of £ yield linear unbiased estimators AY for peM.
Let G be a subgroup of O(V) such that
n G,CG;

(i) gx = xforxeM, geG.
The group G acts on the left of £ via the group action

AnAg I

Thus, G defines an induced group ordering on £ that is, write 4| <<4, iff 4 is
an element of the convex hull of the orbit

{4g '[geG).
LEMMA 4.3. Given A €€, A, <A where A, is the orthogonal projection onto M.

PROOF. Let v denote the invariant probability measure on G and set
Ay = [ Ag 'w(dg).
Then A ef and 4,<A4. With g, as in (4.4), the invariance of » yields
Aig, = [ Ag™ 'goldg) = [ A(gog) 'Wdg) = [ Ag”'wdg) = A,.
Thus,
Ay = T +A1g,)
and so by lemma 4.2, 4, =A4,. Hence 4,<A. O

The above lemma shows that

h(A,)<h(A)
for any convex G-invariant function defined on £. Here is a generalization of
Theorem 4.2.
THEOREM 4.3. In the linear model for Y, assume that gE=2g for geG, Zey.
For each positive semi-definite B and for each v, the function

WA) = (AY —p, BAY —p)
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is increasing in the pre-ordering defined by G and
YA,)<y(4), A €t

PrOOF. As in Theorem 4.2,

Y(A) = trAZA'B,
and so ¢ is convex. The invariance of ¢ follows from the assumption. This
completes the proof. [
Somewhat stronger conclusions can be obtained with invariance assumptions
on the distribution of the error vector

E=Y—©n

The group G is as above. However, we now consider more general loss func-
tions (rather than only quadratic forms) to measure the performance of linear
unbiased estimators. First, consider

WA) = GH(AY —p), Aef (4.8)

as a measure of loss for using AY to estimate p. Of course, H is assumed to
be measurable and such that

E|HAY —p)| <+
for all Aef and Sey.
THEOREM 4.4. Assume the distribution of E is the same as the distribution of gE
for each g€G. Then  in (4.8) is an invariant function - that is,

WAg ') = UA4), A€t geG.

Further, if H is a convex function, then { is a convex function so  is increasing
in the pre-ordering defined by G, and in particular,

UA,)<y(A), A€k

PROOF. Because A4 €€, Ap=np for all pe M. The assumption on the distribution
of E yields,

WA) = GH(AY —p)=6H(A(Y — p))=6H(AE)
= 6H(Ag 'E)=y(AG ).

The first assertion follows.
When H is convex, obviously y is convex and hence increasing. [J

As an example of the previous result, consider the standard univariate linear
regression model with homoscedastic normal errors. Then, Y has a normal dis-
tribution on R”, say N,(u,0%1,), where p lies in a known linear subspace M.
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In this case, the error vector E=Y —p is N,(0,0°1,) and hence the distribution
of E is invariant under all orthogonal transformations. Thus, the appropriate
group for this problem is

G = {g|g€e0,, gx=x for xeM}.
Theorem 4.4 shows that when H is convex,
WA) = GH(AY —p)

is minimized at 4 =4,. Thus the usual least squares estimator minimizes the
expected loss (among linear unbiased estimators) for all convex H. In the nor-
mal case, this result has been strengthened even further. Let C be a convex
symmetric subset of M - that is, C is convex, CCM and C=—C. As a meas-
ure of loss, consider

Y1(4) = P{AY —peC}.
BERK and HWANG [2] proved that
Yi1(d,)<y(4)
for all 4 €. This result has been extended in a variety of directions in EATON

[10] where group induced orderings also play a role.

5. DISCUSSION

There are a variety of open questions related to the results discussed in the
previous sections. First, we discuss differential characterizations of the decreas-
ing functions when the compact group G CO(V) acts on (V,(:,")) as in Section
2. A necessary condition for a real valued function f, with a differential df, to
be decreasing is

PROPOSITION 5.1 (EATON [5)). If fis decreasing, then

(gx —x,df(x))=0 geG, xeV. 5.

ProOOE. For a€[0,1], xeV and gegG,
Ma) = fl(1—a)x+agx)=f(x)
because f is decreasing. Expanding ¢ in a Taylor series about a=0 yields
&a) = $(0)+¢'(0)a+o(a).
Since ¢(a)=¢(0) and
¢'(0) = (gx —x,df(x)),
we have
a(gx —x,df(x)) + o(a)=0.
Dividing by a and letting a—0 gives (5.1). O
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It is known (see EATON and PERLMAN [13]) that (5.1) is necessary and
sufficient for f to be decreasing when G is a reflection group. For Examples 2.2
and 2.3, it can be shown that (5.1) is necessary and sufficient for f with a
differential to be decreasing. However, there are instances of interest where the
question is open. For example, take V'=R" and let G={=*g|ge?,}. This
group is not a reflection group and the pre-ordering induced by G is not a
group induced cone ordering (condition (ii) of Definition 2.2 fails, see EATON
([11], Example 6.6)). A differential characterization of the decreasing functions
1s not known for this example.

Condition (5.1) can be rewritten in a form similar to that in Theorem 2.2
(i1). Let H(x) be the convex cone generated by

{x—gx|geG}.
Then (5.1) is equivalent to
(¢,df(x))<0 for all re H(x). (5.2)

An important question is whether or not (5.2) implies that f is decreasing.
Counterexamples are not known.

Next, we turn to Composition and Convolution Theorems. In statistical
applications, the Convolution Theorem (CT) deals mainly with translation
parameter problems. The only cases for which CT is known to be valid are
when G is a product of reflection groups (see EATON [9] for a discussion) or
when G acts transitively on {x|xeV, (x,x)=1}. Further, CT is known to be
false for finite rotation groups acting on R? (see EATON [9], Example 4.1).
However, there are important cases which arise in practice where the question
has not been settled. For example, take G={=*g|ge%,} acting on R", n=3.
A necessary condition for CT to hold is described in EATON ([9], Proposition
10). The only known counterexamples to CT violate this necessary condition.

The Composition Theorem (CoT) was used in Section 3 to show that the
function ¥ in (3.3) is increasing. The argument employed there was rather spe-
cial because the parametric family in question was a convolution family. In
fact, the only applications of CoT to settle questions relating to the monotoni-
city of functions ¢ of the form (3.1) involve convolution families (see HoL-
LANDER, PROSCHAN and SETHURAMAN [20]). Conditions which yield monoton-
icity of ¢ in (3.1) for non-convolution families would be most useful.

Finally, we offer a few comments on possible applications of group induced
orderings to experimental design. These comments are prompted, at least in
part, by the recent article of PUKELSHEIM [32]. In essence an experimental
design problem consists of a measurable space X (the design space) and a class
9N of probability measures defined on the o-algebra of . Elements of 91 are
interpreted as ‘designs’ Symmetry properties of designs are most naturally
defined in terms of a group G of bimeasurable transformations defined on .
Given geG and a design £ 9T, define the new design g by

€4)(B) = &g 'B) (5-3)

for each measurable set B. Now, assume that
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(5.4)

(i) M is a convex set
(ii) £e9M implies that g§e I for all geG.

Under the assumptions (5.4), the group G acts on 9 and it is clear that

glaé +(1—a)%y) = agéy + (1—a)gh (5.5)

for real numbers a€f0,1], geG and £;,£ e M. In other words, elements of G
act affinely on 9. This suggests that we define the group induced pre-ordering
on 9N as follows:

§ <& iff§eC$) (5.6)

where C(£;) is the convex hull of {g&, |geG)}. This is precisely the type of
situation considered in Section 2, except that in most cases, I is a convex
subset of an infinite -dimensional linear space. A design £€9W is invariant if

gt =¢ forgeG

In order to select a ‘good’ design from 2, one ordinarily specifies a real
valued criterion function ® defined on 9%. Many common criterion functions
satisfy

(i) @) = 0(g), geG G
That 1s, attention is focused on criterion functions which are concave and G-
invariant (see PUKELSHEIM {32] for a discussion of these two conditions in the
context of experimental design problems in linear models).

A design £, is called ®-optimal if £, maximizes ® over 9. To see how the
pre-ordering plays a role, consider

& = Zoggh

where the finite sum ranges over some subset of G and the non-negative
weights a, sum to 1. Then the conditions (5.7) on ® yield

O(€1) = O(Zagghy) = Zap (ghy) = Za, ®(&y) = B(E).

In other words, £ <§, implies that ®(§;)=®(£,) so ® is decreasing.

When the group G is compact (as in some applications), a repetition of the
argument leading to (1.10) shows the ® is maximized over the set of invariant
designs in M. More precisely, let » be the invariant probability measure on the
compact group G. For £€97, let

() B(aé) + (1-w)by) = a®(§) + (l—a)‘l’(ﬁz)}

£ = [ gboldg). (5.8)
This is shorthand notation for £ defined by

&B) = [ (g5)\Bwdg) = [ &g ' Bydg). (-9)
Obviously £ is invariant and because § is in C(§),

B(E) = D(8). (5.10)
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Therefore, given any design § there is an invariant design £ with ®(€)=d(¢).
Hence @ is maximized on the set of invariant designs.

The purpose of the above discussion is to show that group orderings can be
applied to general design problems rather than just linear model design prob-
lems as discussed in PUKELSHEIM [32]. The important observation is that the
group G acts in a very natural way on the designs £ The idea of inducing a
group action on one space when the group acts on a second space is very well
known and is widely used in invariance applications in statistics (for example,
see EATON ([8], Chapter 7) for as systematic discussion). Recent work on group
induced orderings in experimental design can be found in GIlOvAGNOLL,
PUKELSHEIM and WYNN [15].
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